Entrada destacada

Pronunciación de Nombres de Matemáticos

lunes, 9 de enero de 2017

Números de Carol y Kynea



Se deben a Cletus Emmanuel un profesor de matemáticas de la Universidad de Islas Vírgenes, quien los nombró así por un amigo Carol G. Kirnon y su hija Kynea.

Números de Carol

Son los números enteros de la forma



Los primeros números de Carol son :

carol = Table[(2^n - 1)^2 - 2, {n, 20}]

{-1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527, 4190207, 
16769023, 67092479, 268402687, 1073676287, 4294836223, 17179607039, 
68718952447, 274876858367, 1099509530623}

La importancia de estos números se debe a su representación binaria:

BaseForm[carol, 2]





para n > 2 su representación binaria es: n-2 unos, un cero y n+1 unos. Así, en base decimal se pueden representar como:










{-1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527, 4190207, 
16769023, 67092479, 268402687, 1073676287, 4294836223, 17179607039, 
68718952447, 274876858367, 1099509530623}

En base 3

Posibilidad 1

Si en la fórmula que genera los números de Carol (2^n-1)^2-2 cambiamos el 2 por el 3 en las bases (no el exponente) y escribimos en base 3, tenemos:

Table[(3^n - 1)^2 - 3, {n, 20}]

{1, 61, 673, 6397, 58561, 529981, 4778593, 43033597, 387381121,
3486666301, 31380705313, 282428473597, 2541862639681,22876782889021, 
205891103396833, 1853020102758397, 16677181441386241, 150094634522158141, 1350851715348469153, 12157665452083359997}

BaseForm[%, 3]





Obtenemos n - 1 dos, un cero, n-1 dos y un uno al final.

Posibilidad 2

Y si en la fórmula equivalente 2^(2 n) - 2^(n + 1) - 1  cambiamos el 2 en la base por 3, obtenemos : 3^(2 n) - 3^(n + 1) - 1

Table[3^(2 n) - 3^(n + 1) - 1 , {n, 20}]

{-1, 53, 647, 6317, 58319, 529253, 4776407, 43027037, 387361439, 3486607253, 31380528167, 282427942157, 2541861045359,22876778106053, 205891089047927, 1853020059711677, 16677181312246079, 150094634134737653, 1350851714186207687, 12157665448596575597}

en base 3 :

BaseForm[%, 3]






para n > 2, n - 2 dos, un uno y n + 1 dos.

Posibilidad 3

Si de la fórmula equivalente





cambiamos los 2 de la base por 3 :




obteniendo los números :






{-5, 13, 283, 3037, 28795, 263533, 2384923, 21503677, 193651195, 1743215053, 15689998363, 141213173917, 1270928131195,11438381878573, 102945523000603, 926509965285757, 8338590462412795, 75047316486238093, 675425855349711643, 6078832719068111197}

en base 3 :

BaseForm[%, 3]





Igual representación que los obtenidos inicialmente, desde el segundo, pero en base 3.

Números de Kynea

Son los números enteros de la forma




los primeros números de Kynea son :

kynea = Table[(2^n + 1)^2 - 2, {n, 20}]

{7, 23, 79, 287, 1087, 4223, 16639, 66047, 263167, 1050623, 4198399, 16785407, 67125247, 268468223, 1073807359, 4295098367, 17180131327, 68720001023, 274878955519, 1099513724927}

y en forma binaria

BaseForm[kynea, 2]





para n  > 1 su representación binaria es un uno seguido por n-1 ceros y luego n+1 unos. Y algebráicamente en base decimal los números de Kynea son:








{7, 23, 79, 287, 1087, 4223, 16639, 66047, 263167, 1050623}

Ejercicio

1. Con los números de Kynea, realizar el mismo estudio que se hizo con los números de Carol.

2. Dar una explicación del comportamiento binario de los números de Carol y Kynea.

3. Dar una explicación del comportamiento de los números de Carol y Kynea en base 3.

4. Explorar otras bases.

Para aprender más sobre Mathematica ingrese aquí sitio de aprendizaje de Wolfram o en mi website ustamathematica.wixsite.com/basicas


No hay comentarios.:

Publicar un comentario