Entrada destacada

Juego del Caos cambiando el dado al orden del Genoma

martes, 20 de febrero de 2018

Otra Conjetura de Goldbach



Aparte de la famosa, y aún no resuelta, Conjetura propuesta por Goldbach sobre que todo número par mayor que dos es la suma de dos primos (de la cual publique aquí el 2 de Octubre de 2016), la Conjetura débil de Goldbach (publicada aquí el 5 de Octubre de 2016) y algunas conjeturas anexas a la de Goldbach (publicada aquí el 19 de Mayo de 2017), existe otra conjetura propuesta por Goldbach cuyo enunciado es:

Cada número impar se puede escribir como la suma de 
un número primo más el doble de un cuadrado.

Esta conjetura es falsa y los números más pequeños para los cuales falla son:

Determinamos el conjunto imcom formado por los números impares menores que 10000 y que no son primos, y el conjunto gold formado por todas las posibles combinaciones de un primo más dos veces un cuadrado:

imcom = Complement[Table[2 n + 1, {n, 10000}], 
   Table[Prime[n], {n, PrimePi[20000]}]];
gold = Flatten@Table[Prime[n] + 2 k^2, {n, 2000}, {k, 2000}];

El complemento de imcom con respecto a gold nos da los números que no satisfacen la conjetura

Complement[imcom, gold]

{5777, 5993}

Así, los números 5777 y 5993 no son representables como la suma de un número primo más el doble de un cuadrado.


Para aprender más sobre Mathematica ingrese aquí sitio de aprendizaje de Wolfram o en mi website ustamathematica.wixsite.com/basicas


No hay comentarios.:

Publicar un comentario