Siguiendo con las creaciones del artista matemático Hamid Nadir Yeganeh, tenemos un águila en dos presentaciones primero generada por elipses y posteriormente por circunferencias.
El código previo que se debe correr es:
e[m_, n_] :=
1/2500 (Pi/2 + ArcTan[3 m/2 - 120]) (Pi/2 -
ArcTan[4 m/20 - 20]) (Pi/2 + ArcTanh[8 n/7 - 16]) (Pi/2 -
ArcTan[8 n/7 - 104/3])
A[m_, n_] :=
1/40 ArcTan[400 (-8/30 + n/35)] (1 - m/200)^10 -
m/200 (1 - 17 m/6000 (1 - n/35)) - 1/20 (1 - m/200)^40
B[m_, n_] :=
e[m, n] - 10/25 (m/200)^7 +
1/10 (Pi/2 - ArcTan[7 m/20 - 84/3]) ArcTan[
4000 (-8/30 + n/35)] (4/10 - m/200) + (1/5 +
7/(100 Pi) (ArcTan[m/2 - 100/3])) ((-1)^n/70 +
n/35) (1 - (1 - m/200)^10) -
1/12 (1 - m/200)^20 ArcTan[400 (-8/30 + n/35)]
1/2500 (Pi/2 + ArcTan[3 m/2 - 120]) (Pi/2 -
ArcTan[4 m/20 - 20]) (Pi/2 + ArcTanh[8 n/7 - 16]) (Pi/2 -
ArcTan[8 n/7 - 104/3])
A[m_, n_] :=
1/40 ArcTan[400 (-8/30 + n/35)] (1 - m/200)^10 -
m/200 (1 - 17 m/6000 (1 - n/35)) - 1/20 (1 - m/200)^40
B[m_, n_] :=
e[m, n] - 10/25 (m/200)^7 +
1/10 (Pi/2 - ArcTan[7 m/20 - 84/3]) ArcTan[
4000 (-8/30 + n/35)] (4/10 - m/200) + (1/5 +
7/(100 Pi) (ArcTan[m/2 - 100/3])) ((-1)^n/70 +
n/35) (1 - (1 - m/200)^10) -
1/12 (1 - m/200)^20 ArcTan[400 (-8/30 + n/35)]
para el águila por elipses:
Graphics[Table[
Circle[ReIm[A[m, n] + I B[m, n]], {1, Sqrt[39]/20}/150], {m, 1,
200}, {n, 0, 35}]]
Y para el águila por circunferencias:
Graphics[Table[
Circle[ReIm[A[m, n] + I B[m, n]], 1/150], {m, 1, 200}, {n, 0, 35}]]