Definición de las funciones Trigonométricas
Definición de las funciones trigonométricas sobre el circulo unitario.
g1 = ContourPlot[{x^2 + y^2 == 1}, {x, -2, 2}, {y, -2, 2}, Axes -> True]; s = 2; Manipulate[ Show[g1, Graphics[{Text["\[Theta]", 0.3 {Cos[a/2], Sin[a/2]}], Line[{{0, 0}, s Sign[Cos[a]] {1, Tan[a]}}], {Dashed, Circle[{0, 0}, 0.2, {0, a}], Line[{{0, 0}, -s Sign[Cos[a]] {1, Tan[a]}}], Switch[fun, seno, Line[{{Cos[a], 0}, {0, 0}}], coseno, Line[{{Cos[a], 0}, {Cos[a], Sin[a]}}], tangente, Line[{{1, -2}, {1, 2}}], cotangente, Line[{{-2, 1}, {2, 1}}], secante, Line[{{1, -2}, {1, 2}}], cosecante, Line[{{-2, 1}, {2, 1}}]]}, Red, Point[{Cos[a], Sin[a]}], Thickness[0.01], Switch[fun, seno, Line[{{Cos[a], 0}, {Cos[a], Sin[a]}}], coseno, Line[{{Cos[a], 0}, {0, 0}}], tangente, Line[{{1, 0}, {1, Tan[a]}}], cotangente, Line[{{0, 1}, {Cot[a], 1}}], secante, Line[{{0, 0}, {1, Tan[a]}}], cosecante, Line[{{0, 0}, {Cot[a], 1}}]]}]], {{a, Pi/4, "θ"}, 0, 2 Pi}, {{fun, seno, "Función"}, {seno, coseno, tangente, cotangente, secante, cosecante}, ControlType -> Setter}]
Construcción de las Gráficas
g1 = ContourPlot[{x^2 + y^2 == 1}, {x, -2, 2}, {y, -2, 2}, Axes -> True]; s = 1.9; Manipulate[ Switch[fun, seno, ff = Sin, coseno, ff = Cos, tangente, ff = Tan, cotangente, ff = Cot, secante, ff = Sec, cosecante, ff = Csc]; linea[ff_] := Line[{{a + 2, 0}, {a + 2, ff[a]}}]; Show[Plot[ff[x - 2], {x, 2, 2.00001 + a}, PlotRange -> {{-2.1, 9}, {-4.5, 4.5}}, Ticks -> {{{2 + Pi/2, Pi/2}, {2 + Pi, Pi}, {2 + 3 Pi/2, 3 Pi/2}, {2 + 2 Pi, 2 Pi}}, {-1, 1}}, AspectRatio -> 1], g1, Graphics[{Arrow[{{2, -4}, {2, 4}}], Arrow[{{1.5, 0}, {9, 0}}], Text["\[Theta]", {8.8, 0.2}], Text["\[Theta]", 0.3 {Cos[a/2], Sin[a/2]}], {Green, PointSize[0.02], Point[{Cos[a], Sin[a]}], Point[{a + 2, 0}]}, Line[{{0, 0}, s Sign[Cos[a]] {1, Tan[a]}}], {Dashed, Circle[{0, 0}, 0.2, {0, a}], Line[{{0, 0}, -s Sign[Cos[a]] {1, Tan[a]}}], Switch[fun, seno, Line[{{Cos[a], 0}, {0, 0}}], coseno, Line[{{Cos[a], 0}, {Cos[a], Sin[a]}}], tangente, Line[{{1, -2}, {1, 2}}], cotangente, Line[{{-2, 1}, {2, 1}}], secante, Line[{{1, -2}, {1, 2}}], cosecante, Line[{{-2, 1}, {2, 1}}]]}, Red, Thickness[0.01], linea[ff], Switch[fun, seno, Line[{{Cos[a], 0}, {Cos[a], Sin[a]}}], coseno, Line[{{Cos[a], 0}, {0, 0}}], tangente, Line[{{1, 0}, {1, Tan[a]}}], cotangente, Line[{{0, 1}, {Min[Cot[a], 4.5], 1}}], secante, Line[{{0, 0}, {1, Tan[a]}}], cosecante, Line[{{0, 0}, {Cot[a], 1}}]]}], AspectRatio -> Automatic], {{a, Pi/4, "θ"}, 0.000001, 2 Pi}, {{fun, seno, "Función"}, {seno, coseno, tangente, cotangente, secante, cosecante}, ControlType -> Setter}, ContentSize -> {400, 500}]
Representación de las funciones trigonométricas
Manipulate[ Show[Plot[f[x], {x, -2 Pi, 2 Pi}, PlotRange -> 3, Ticks -> {{-2 Pi, -3 Pi/2, -Pi, -Pi/2, Pi/2, Pi, 3 Pi/2, 2 Pi}, {-1, 1}}], ContourPlot[{y == 1, y == -1, x == 0, x == -Pi/2, x == Pi/2, x == -Pi, x == Pi, x == -3 Pi/2, x == 3 Pi/2}, {x, -2 Pi, 2 Pi}, {y, -3, 3}, ContourStyle -> {{Dashed, LightRed}}]], {f, {Sin, Cos, Tan, Cot, Sec, Csc}, ControlType -> Setter}]
Para aprender más sobre Mathematica ingrese aquí sitio de aprendizaje de Wolfram o en mi website ustamathematica.wixsite.com/basicas
g1 = ContourPlot[{x^2 + y^2 == 1}, {x, -2, 2}, {y, -2, 2}, Axes -> True]; s = 2; Manipulate[ Show[g1, Graphics[{Text["\[Theta]", 0.3 {Cos[a/2], Sin[a/2]}], Line[{{0, 0}, s Sign[Cos[a]] {1, Tan[a]}}], {Dashed, Circle[{0, 0}, 0.2, {0, a}], Line[{{0, 0}, -s Sign[Cos[a]] {1, Tan[a]}}], Switch[fun, seno, Line[{{Cos[a], 0}, {0, 0}}], coseno, Line[{{Cos[a], 0}, {Cos[a], Sin[a]}}], tangente, Line[{{1, -2}, {1, 2}}], cotangente, Line[{{-2, 1}, {2, 1}}], secante, Line[{{1, -2}, {1, 2}}], cosecante, Line[{{-2, 1}, {2, 1}}]]}, Red, Point[{Cos[a], Sin[a]}], Thickness[0.01], Switch[fun, seno, Line[{{Cos[a], 0}, {Cos[a], Sin[a]}}], coseno, Line[{{Cos[a], 0}, {0, 0}}], tangente, Line[{{1, 0}, {1, Tan[a]}}], cotangente, Line[{{0, 1}, {Cot[a], 1}}], secante, Line[{{0, 0}, {1, Tan[a]}}], cosecante, Line[{{0, 0}, {Cot[a], 1}}]]}]], {{a, Pi/4, "θ"}, 0, 2 Pi}, {{fun, seno, "Función"}, {seno, coseno, tangente, cotangente, secante, cosecante}, ControlType -> Setter}]
Construcción de las Gráficas
g1 = ContourPlot[{x^2 + y^2 == 1}, {x, -2, 2}, {y, -2, 2}, Axes -> True]; s = 1.9; Manipulate[ Switch[fun, seno, ff = Sin, coseno, ff = Cos, tangente, ff = Tan, cotangente, ff = Cot, secante, ff = Sec, cosecante, ff = Csc]; linea[ff_] := Line[{{a + 2, 0}, {a + 2, ff[a]}}]; Show[Plot[ff[x - 2], {x, 2, 2.00001 + a}, PlotRange -> {{-2.1, 9}, {-4.5, 4.5}}, Ticks -> {{{2 + Pi/2, Pi/2}, {2 + Pi, Pi}, {2 + 3 Pi/2, 3 Pi/2}, {2 + 2 Pi, 2 Pi}}, {-1, 1}}, AspectRatio -> 1], g1, Graphics[{Arrow[{{2, -4}, {2, 4}}], Arrow[{{1.5, 0}, {9, 0}}], Text["\[Theta]", {8.8, 0.2}], Text["\[Theta]", 0.3 {Cos[a/2], Sin[a/2]}], {Green, PointSize[0.02], Point[{Cos[a], Sin[a]}], Point[{a + 2, 0}]}, Line[{{0, 0}, s Sign[Cos[a]] {1, Tan[a]}}], {Dashed, Circle[{0, 0}, 0.2, {0, a}], Line[{{0, 0}, -s Sign[Cos[a]] {1, Tan[a]}}], Switch[fun, seno, Line[{{Cos[a], 0}, {0, 0}}], coseno, Line[{{Cos[a], 0}, {Cos[a], Sin[a]}}], tangente, Line[{{1, -2}, {1, 2}}], cotangente, Line[{{-2, 1}, {2, 1}}], secante, Line[{{1, -2}, {1, 2}}], cosecante, Line[{{-2, 1}, {2, 1}}]]}, Red, Thickness[0.01], linea[ff], Switch[fun, seno, Line[{{Cos[a], 0}, {Cos[a], Sin[a]}}], coseno, Line[{{Cos[a], 0}, {0, 0}}], tangente, Line[{{1, 0}, {1, Tan[a]}}], cotangente, Line[{{0, 1}, {Min[Cot[a], 4.5], 1}}], secante, Line[{{0, 0}, {1, Tan[a]}}], cosecante, Line[{{0, 0}, {Cot[a], 1}}]]}], AspectRatio -> Automatic], {{a, Pi/4, "θ"}, 0.000001, 2 Pi}, {{fun, seno, "Función"}, {seno, coseno, tangente, cotangente, secante, cosecante}, ControlType -> Setter}, ContentSize -> {400, 500}]
Representación de las funciones trigonométricas
Manipulate[ Show[Plot[f[x], {x, -2 Pi, 2 Pi}, PlotRange -> 3, Ticks -> {{-2 Pi, -3 Pi/2, -Pi, -Pi/2, Pi/2, Pi, 3 Pi/2, 2 Pi}, {-1, 1}}], ContourPlot[{y == 1, y == -1, x == 0, x == -Pi/2, x == Pi/2, x == -Pi, x == Pi, x == -3 Pi/2, x == 3 Pi/2}, {x, -2 Pi, 2 Pi}, {y, -3, 3}, ContourStyle -> {{Dashed, LightRed}}]], {f, {Sin, Cos, Tan, Cot, Sec, Csc}, ControlType -> Setter}]
Para aprender más sobre Mathematica ingrese aquí sitio de aprendizaje de Wolfram o en mi website ustamathematica.wixsite.com/basicas