Consiste en los cambios que se pueden obtener sobre una función al pre-componer y pos-componer con respecto a funciones lineales.
Consideraremos la función:
f[x_] := Piecewise[{{x + 2, -1 <= x < 0}, {2, 0 <= x < 2}, {-x + 4,
2 <= x < 4}, {x - 4, 4 <= x <= 5}}, None]
Plot[f[x], {x, -5, 5}, GridLines -> All]
Sea g(x) = c x + d, realizaremos la composición (g ∘ f)(x) = g(f(x)) = c f(x) + d, que afecta a la función en el eje Y.
f[x_] := Piecewise[{{x + 2, -1 <= x < 0}, {2, 0 <= x < 2}, {-x + 4,
2 <= x < 4}, {x - 4, 4 <= x <= 5}}, None]
Manipulate[g[x_] := c x + d;
Show[Plot[{f[x], g[f[x]]}, {x, -6, 6},
PlotLabel -> Row[{c, "f(x)", If[d >= 0, "+", ""], d}],
PlotStyle -> {{Dashed, Blue}, {Red, Thickness[0.01]}},
PlotRange -> 8, GridLines -> All, AspectRatio -> 1],
Graphics[{Text["f(x)", {2.2, 2.2}]}]], {{c, 1}, -3, 3}, {{d, 0}, -3,
3}]
Sea g(x) = a x + b, realizaremos la composición (f ∘ g)(x) = f(g(x)) = f(a x + b), que afecta a la función en el eje X.
f[x_] := Piecewise[{{x + 2, -1 < x < 0}, {2, 0 < x < 2}, {-x + 4,
2 < x < 4}, {x - 4, 4 < x < 5}}, None]
Manipulate[g[x_] := a x + b;
Show[Plot[{f[x], f[a x + b]}, {x, -6, 6},
PlotLabel -> Row[{"f(", a, "x", If[b >= 0, "+", ""], b, ")"}],
PlotStyle -> {{Dashed, Blue}, {Red, Thickness[0.01]}},
PlotRange -> 8, GridLines -> All, AspectRatio -> 1],
Graphics[{Text["f(x)", {2.2, 2.2}]}]], {{a, 1}, -3, 3}, {{b, 0}, -3,
3}]
Composiciones con g (x) = - x
Clear[f, gf, gfg]
f[x_] := Piecewise[{{x + 2, -1 < x < 0}, {2, 0 < x < 2}, {-x + 4,
2 < x < 4}, {x - 4, 4 < x < 5}}, None]
Manipulate[
Plot[{f[x],
Evaluate@Switch[op, fg, f[-x], gf, -f[x], gfg, -f[-x]]}, {x, -5,
5}, PlotRange -> 5,
PlotStyle -> {{Dashed, Blue}, {Red, Thickness[0.01]}},
GridLines -> All,
AspectRatio -> 1], {{op, "", "Composición: Roja"}, {fg -> "f(-x)",
gf -> "-f(x)", gfg -> "-f(-x)"}}]
Para aprender más sobre Mathematica ingrese aquí sitio de aprendizaje de Wolfram o en mi website ustamathematica.wixsite.com/basicas