Dados tres puntos P, Q y R en el espacio, no colineales, determinan un único plano.
1. calculamos los vectores:
2. calculamos el vector
Manipulate[If[plano, t = 0]; Show[
Graphics3D[{{Red, Text["P", {1, 1, 2.5}], Text["Q", {3, 1, 4.5}],
Text["R", {4, 4, 1.5}], PointSize[0.01], Point[{1, 1, 2}],
Point[{3, 1, 4}], Point[{4, 4, 1}]}, {Red, Thick,
If[ve1,"u", {2, 1,
4}], Arrow[{{1, 1, 2}, {3, 1, 4}}],
Arrow[{{1 - t, 1 - t, 2 - 2 t}, {3 - t, 1 - t,
4 - 2 t}}]}]}, {Green, Thick,
If[ve2, "v", {3, 3,
2}], Arrow[{{1, 1, 2}, {4, 4, 1}}],
Arrow[{{1 - t, 1 - t, 2 - 2 t}, {4 - t, 4 - t, 1 - 2 t}}]}]},
If[punto, {Green, PointSize[0.01], Point[{-1, 1, 0}],
"(x0,y0,z0", {-2, 1, 0.5}], Point[{-4, -3, 7/3}],
Text["(x,y,z)", {-4, -3, 2.5}]}],
If[ve3, {Pink, Thick, Arrow[{{-1, 1, 0}, {-4, -3, 7/3}}],
Arrow[{{-1 + s, 1 - s, 0}, {-4 + s, -3 - s, 7/3}}]}],
If[s == 1, {PointSize[0.01], Point[{-3, -4, 7/3}],
Text["(x-x0,y-y0,z-z0)", {-3, -4,
2}]}], {Blue, Thick,
If[cruz, {Text["(a,b,c)", {-3, 4, 4}],
Arrow[{{0, 0, 0}, {-3, 4, 3}}],
Arrow[{{1, 1, 2}, {-2, 5, 5}}]}]}},
PlotRange -> {{-7, 7}, {-7, 7}, {-7, 7}}, Ticks -> None,
Axes -> True, AxesOrigin -> {0, 0, 0},
AxesLabel -> {"X", "Y", "Z"}, ViewPoint -> {1, -10, 6}],
If[plano,
ContourPlot3D[-3 x + 4 y + 3 z == 7, {x, -7, 7}, {y, -7,
7}, {z, -7, 7}, ContourStyle -> Opacity[0.5], Mesh -> 1],
ContourPlot3D[
x == 13, {x, -7, 7}, {y, -7, 7}, {z, -7, 7}]]], {{ve1, False,
"Vector PQ"}, \
{False, True}}, {{ve2, False,
"Vector PR"}, \
{False, True}}, {{t, 0, "Representante"}, 0, 1,
Trigger}, {{cruz, False,
"u x v"}, {False,
True}}, {{plano, False, "Plano"}, {False, True}}, {{punto, False,
"Punto en el plano"}, {False, True}}, {{ve3, False,
"Vector"}, {False, True}}, {{s, 0, "Trasladar"}, 0, 1, Trigger},
ControlPlacement -> Left]